L5: Taxes

Adam Hal Spencer

The University of Nottingham

Essentials of Financial Economics 2021
Financial Decision-Making (1 ${ }^{\text {st }}$ Quarter)

Roadmap

(1) Introduction

(2) Debt Tax Shields
(3) Adjusted Present Value (APV) Method

4 Weighted Average Cost of Capital (WACC)
(5) Conclusion

Motivation

- The only things that are certain in life are death and taxes.
- Nobody likes them.
- A surprising twist: taxes actually make borrowing look more attractive.

Roadmap

(1) Introduction

(2) Debt Tax Shields

(3) Adjusted Present Value (APV) Method

4 Weighted Average Cost of Capital (WACC)
(5) Conclusion

Tax deductibility of interest (1)

- Interest payments are tax deductible in the United Kingdom.
- There are some caps to the amount you can claim.
- Paid out of before tax earnings.
- Holding all else equal, a higher level of interest payments reduces the firm's taxable income.
- Debt financing has an additional benefit over equity financing along this channel.

Tax deductibility of interest (2)

- Consider two firms - Firm Unlevered and Firm Levered.
- Firm Unlevered is 100% equity while Firm Levered borrowed \$1,000 worth of debt at 8% interest.
- Assume that capital expenditures, depreciation and the change in net working capital are zero.

EBIT	Firm Unlevered	Firm Levered
Interest	500	500
Pretax income	0	80
Tax (35\%)	500	420
Net income to shareholders	175	147
Total income to D and E	$325+0=325$	$273+80=353$
Tax shield from debt	0	28

- Total cash flow from Firm Levered is 28 higher - known as the debt tax shield (DTS).

Tax deductibility of interest (3)

- Firm Unlevered is 100% equity while Firm Levered borrowed \$D worth of debt at $r_{D} \%$ interest.

	Firm Unlevered	Firm Levered
EBIT	C	C
Interest	0	$r_{D} D$
Pretax income	C	$C-r_{D} D$
Tax (35\%)	$\tau^{C} C$	$\tau^{C}\left(C-r_{D} D\right)$
Net income to shareholders	$\left(1-\tau^{C}\right) C$	$\left(1-\tau^{C}\right)\left(C-r_{D} D\right)$
Total income to D and E	$\left(1-\tau^{C}\right) C$	$\left(1-\tau^{C}\right) C+\tau^{C} r_{D} D$
Tax shield from debt	0	$\tau^{C} r_{D} D$

- Value from having debt of D at interest rate of r_{D} is $\tau^{C} r_{D} D$.

Roadmap

(1) Introduction

(2) Debt Tax Shields

(3) Adjusted Present Value (APV) Method

4. Weighted Average Cost of Capital (WACC)

(5) Conclusion

Valuation of tax shields

- If a firm takes-out some debt worth D at an interest rate of r_{D} for T periods

$$
\begin{equation*}
P V(D T S)=\sum_{t=1}^{T} \frac{\tau^{C} r_{D} D}{\left(1+r^{*}\right)^{t}} \tag{1}
\end{equation*}
$$

- If the debt is assumed to be held in perpetuity, then

$$
\begin{equation*}
P V(D T S)=\frac{\tau^{C} r_{D} D}{r^{*}} \tag{2}
\end{equation*}
$$

- What discount rate should we use for r^{*} in (1) and (2)?

Discount rate for tax shields

- What discount rate should we use for r^{*} in the tax shields formula?
- The rate should reflect the riskiness of the tax shield payments.
(1) r_{D} : reflects the risk of the debt that generates the tax shields.
(2) r_{A} : reflects the risk of the corporate profits, which we need to generate tax shields.
(3) r_{E} : gives a conservative estimate of the risk.
- When we set $r^{*}=r_{D}$ then the formula for (2) simplifies

$$
P V(D T S)=\tau^{C} D
$$

Adjusted present value method (APV) (1)

- A method for evaluating firms and projects.
- Say that a project is to be financed using debt and equity.
- APV method looks at a counterfactual where the project is 100% equity-financed then adds-in the tax benefits of debt.
- Explicitly separates the project's cash flows that are associated with real operations and financing.

Adjusted present value method (APV) (2)

- Refer back to slide (6) with Firm Unlevered and Firm Levered.
- Let's assume that their cash flows are perpetual.
- I.e. each firm has project cash flows of C each period while Firm Levered has debt of D maintained in perpetuity.
- Denote the value of Firm Unlevered and Firm Levered by V_{U} and V_{L} respectively.

$$
\begin{aligned}
& V_{U}=P V\left[\left(1-\tau^{C}\right) C\right] \\
& V_{L}=P V\left[\left(1-\tau^{C}\right) C+\tau^{C} r_{D} D\right]
\end{aligned}
$$

which can be combined to get

$$
\begin{equation*}
V_{L}=V_{U}+P V(D T S) \tag{3}
\end{equation*}
$$

which is known as the APV formula.

- We'll make some more adjustments to equation (3) in future lectures.

Some notes on APV

- When calculating the APV of a new project, always use the incremental debt.
- τ^{C} is the marginal tax rate; not the average.
- Need to look at the tax that you'll be charged on marginal debt.
- When we have positive taxes, we can create value by purely changing firm's capital structure, (see example later).

Personal taxes (1)

- Investors in the firm need to pay additional taxes, (e.g. capital gains and dividends).
- The cash flow to individual investors net of all taxes is what's important.

Time Period	C-Corporation		Individual		
	Ordinary Income $\left(\tau_{c}\right)$	Capital Gains ($\tau_{\mathrm{c}, \mathrm{cg}}$)	Ordinary Income $\left(\tau_{p}\right)$	$\begin{gathered} \text { Dividends } \\ \left(\tau_{\text {p,div }}\right) \end{gathered}$	Capital Gains ($\tau_{\mathrm{p}, \mathrm{cg}}$)
Pre-1981	46.0\%	28.0\%	70.0\%	70.0\%	28.0\%
1982-1986	46.0\%	20.0\%	50.0\%	50.0\%	20.0\%
1987	40.0\%	28.0\%	39.0\%	39.0\%	28.0\%
1988-1990	34.0\%	34.0\%	28.0\%	28.0\%	28.0\%
1991-1992	34.0\%	34.0\%	31.0\%	31.0\%	28.0\%
1993-1996	35.0\%	35.0\%	39.6\%	39.6\%	28.0\%
1997-2000	35.0\%	35.0\%	39.6\%	39.6\%	20.0\%
2001-2002	35.0\%	35.0\%	38.6\%	38.6\%	20.0\%
2003-	35.0\%	35.0\%	35.0\%	15.0\%	15.0\%

Source: Scholes et al. (2005), Taxes and Business Strategy ($3^{\text {rd }}$ ed), Table 1.1, p. 12

Personal taxes (2)

- Denote τ^{i} the personal tax rate paid on interest/ordinary income.
- Denote τ^{e} the personal tax rate on dividends.

	Flow to debtholders	Flow to equityholders
Amount to distribute	1	1
Corporate taxes	0	τ^{C}
Income after corporate tax	1	$1-\tau^{C}$
Personal taxes	τ^{i}	$\left(1-\tau^{C}\right) \tau^{e}$
Investor flow after tax	$\left(1-\tau^{i}\right)$	$\left(1-\tau^{C}\right)\left(1-\tau^{e}\right)$

- See that there is no corporate tax liability for interest paid to debtholders.
- Tax benefit to debt if $\left(1-\tau^{i}\right)>\left(1-\tau^{C}\right)\left(1-\tau^{e}\right)$.
- Has been the case historically.

Personal taxes (3)

- When debt is held in perpetuity then

$$
\begin{aligned}
P V(D T S) & =D \tau^{*} \\
\tau^{*} & =\frac{\left(1-\tau^{i}\right)-\left(1-\tau^{C}\right)\left(1-\tau^{e}\right)}{1-\tau^{i}}
\end{aligned}
$$

which is expressed as a percentage. Derivation from Miller (1977).

- When τ^{i} is high, the tax advantage of debt is smaller.
- When $\tau^{e}=\tau^{i}$ then $P V(D T S)=\tau^{C} D$ as before.

Personal taxes (4)

- How does τ^{*} vary with τ^{i} ?
- Fix $\tau^{C}=0.35$ and $\tau^{e}=0.15$ and vary τ^{i} from 0 to 0.5 (below).

Effective tax advantage of debt

Example 1: leveraged recapitalisation

- Firm Pure has 1b shares outstanding, which are trading at $\$ 640$ per share.
- The firm is currently 100% equity.
- Assume that $\tau^{C}=0.35$ and $r_{D}=0.03$ while all personal tax rates are zero.
- Say that the firm issues $\$ 100 \mathrm{~b}$ in perpetual debt and uses the proceeds to repurchase shares.
(a) What happens to the share price? What is the value of the debt tax shield?
(b) What is the firm's value after the recap?
(c) How many shares are repurchased and at what price?
(d) Who gains and loses from the recap?
(e) What happens to the price at announcement?

Example 1 solution (1)

- The firm was originally 100% equity so $V_{U}=\$ 640 \times 1 b=\$ 640 b$.
- With the new debt, we can use APV to get

$$
\begin{aligned}
V_{L} & =V_{U}+P V(D T S) \\
& =\$ 640 b+\$ 100(0.35) b \\
& =\$ 675 b
\end{aligned}
$$

where I just assumed that the debt was perpetual and r_{D} was the appropriate discount rate.

- Use the two equations and two unknowns approach to find the new share price and the number of shares repurchased.

$$
\begin{aligned}
S \times P_{\text {new }} & =\$ 100 b \\
P_{\text {new }} & =\frac{\$ 675 b-\$ 100 b}{1 b-S}
\end{aligned}
$$

which can be solved to get $P_{\text {new }}=\$ 675$ and $S=\frac{100}{675} b$.

Example 1 [part 2]

- Now assume that there are personal tax rates of $\tau^{e}=0.15$ and $\tau^{i}=0.35$. Repeat the previous exercise!
- Give an intuition for the different price that the shares rise to on announcement relative to part 1.

Example 1 [part 2] solution (1)

- The effective tax benefit of debt is given by

$$
\begin{aligned}
\tau^{*} & =1-\frac{\left(1-\tau^{C}\right)\left(1-\tau^{e}\right)}{1-\tau^{i}} \\
& =0.15
\end{aligned}
$$

- Then the present value of the DTS is $P V(D T S)=\$ 15 b$.
- $V_{L}=\$ 640 b+\$ 15 b=\$ 655 b$.

$$
\begin{aligned}
S P_{\text {new }} & =\$ 100 b \\
P_{\text {new }} & =\frac{655-100}{1-S}
\end{aligned}
$$

which can be solved for $S=\frac{100}{655}$ and $P_{\text {new }}=\$ 655$.

- The price rise is now smaller given that there is less of a tax benefit of debt due to $\tau^{i}>0$.

Roadmap

(1) Introduction

(2) Debt Tax Shields

(3) Adjusted Present Value (APV) Method

4 Weighted Average Cost of Capital (WACC)

(5) Conclusion

Motivation

- We've explored the implications of taxes in the context of the APV method.
- APV is a versatile method of valuation, the further benefits of which we will explore in future lectures.
- But in industry, most firms will use a method called weighted average cost of capital (WACC) to account for tax benefits.
- APV method adjusted the cash flows associated with the project.
- WACC method instead adjusts the discount rate.

WACC definition (1)

- The APV method told us that we could increase firm value by assuming debt.
- When the corporate tax rate is positive, we define WACC as

$$
\begin{aligned}
W A C C & =\frac{E}{D+E} r_{E}+\frac{D}{D+E}\left(1-\tau^{C}\right) r_{D} \\
& =r_{A}-r_{D} \frac{D}{V} \tau^{C}
\end{aligned}
$$

- How does this compare with r_{A} ?

$$
\begin{aligned}
r_{A} & =\frac{E}{D+E} r_{E}+\frac{D}{D+E} r_{D} \\
& >\frac{E}{D+E} r_{E}+\frac{D}{D+E}\left(1-\tau^{C}\right) r_{D} \\
& =\text { WACC }
\end{aligned}
$$

where the inequality relies on $\tau^{C}>0$.

WACC definition (2)

- How do we use the WACC estimate?
- If the cash flows from the real operations of the project are given by C_{t} for $t \in\{0,1,2, \ldots\}$ then discount as follows

$$
V_{L}=\sum_{t=0}^{\infty} \frac{C_{t}}{(1+W A C C)^{t}}
$$

- Given that $W A C C<r_{A}$, see that each of the cash flows C_{t} after discounting will be higher than using r_{A}.
- This incorporates the tax shields you'll be receiving from the Government!
- To use WACC though, we must assume a constant leverage ratio! l.e. $\frac{D}{E}$ is constant!

WACC intuition

- A project must generate sufficient returns to compensate investors for risk.
- Interest payments reduce taxes and thus the required rate of return from the assets.

Equivalence of APV and WACC (1)

- Firm valuation under the two methods can be shown to be the same under certain conditions.
- Let's start by assuming that we have a firm that has the following characteristics:
- Perpetual cash flow of C (after-tax) in each period.
- Has a constant $\frac{D}{V_{L}}$ ratio.
- Discounts its tax shields with r_{A}.

Example A [for Aston] (1)

- Aston Martin produces the Vanquish (Bond car).
- Assume the following
- $r_{D}=0.060$.
- $r_{E}=0.124$.
- $\tau^{C}=0.350$.
- $D / A=0.400$.

Example A [for Aston] (2)

- Assume that Aston Martin considers investing $£ 12.5$ b in a new factory to be built in Cornwall, United Kingdom.
- Will generate perpetual cash flows of $£ 1.731$ b before tax each period. (I.e. $£ 1.125 \mathrm{~b}$ after tax).
- Project has same risk as their current operations and will be financed with same debt and equity ratios.
(a) What is the project's WACC?
(b) What is the value of the project under the WACC method?

Suppose now instead that rather than financing the project using a fixed debt to equity ratio policy, that the firm will instead use fixed perpetual debt of $£ 5$ b.
(c) What is the value of the project under the APV method?

Example A [for Aston] solution (1)

(a) The project WACC is found as

$$
\begin{aligned}
W A C C & =0.124 \times 0.6+0.06 \times(1-0.35) \times 0.4 \\
& =9 \%
\end{aligned}
$$

(b) The NPV using the WACC approach is then

$$
\begin{aligned}
N P V & =-12.5 b+\frac{1.125 b}{9 \%} \\
& =0 .
\end{aligned}
$$

(c) Find the value of the unlevered firm as

$$
\begin{aligned}
r_{A} & =12.4 \% * 0.6+6 \% * 0.4 \\
& =9.84 \% \\
\Rightarrow V_{U} & =-12.5+\frac{1.125}{9.84 \%} \\
& =-1.067 b
\end{aligned}
$$

Example A [for Aston] solution (2)

- Then find the present value of the debt tax shields as

$$
\begin{aligned}
P V(D T S) & =\frac{5 b \times 0.06 \times 0.35}{r} \\
& =\frac{0.105 b}{r}
\end{aligned}
$$

which will vary depending on which r we choose.
(i) Use $r_{D}=0.06 \Rightarrow V_{L}=-1.067+1.75=0.685$.
(ii) Use $r_{A}=0.984 \Rightarrow V_{L}=-1.067+1.067=0$.
(iii) Use $r_{E}=0.124 \Rightarrow V_{L}=-0.218$.

Roadmap

(1) Introduction

(2) Debt Tax Shields

3 Adjusted Present Value (APV) Method

4 Weighted Average Cost of Capital (WACC)
(5) Conclusion

Takeaways

- Taxes and capital structure: interest payments are a tax writeoff and so we generate extra value through tax shields.
- Two methods for evaluating - APV and WACC.
- WACC is the primary method of use in the real world.

