Lecture 5: Theory of Corporate Finance III Taxes

Adam Hal Spencer

The University of Nottingham
Advanced Financial Economics 2020

Roadmap

(1) Introduction

(2) Model Environment
(3) Model Equilibrium

4 Depreciation Expensing
(5) Conclusion

Motivation

- How do investment and capital structure choices change when we introduce corporate taxes?
- Is it better for the firm to issue new debt or equity?

Tax shields

- Interest payments are tax deductible!
- Finance guys refer to this as debt tax shields.
- The more the firm borrows, the more it pays in interest. Thus the more it saves in taxes.
- Can think of this as like getting a cheque back from the government.

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium
4. Depreciation Expensing
(5) Conclusion

Setup

- The difference in this model is that we now have corporate taxes on the firm's earnings in addition to these debt tax shields.
- The firm receives the tax shields in $t=1$ when it repays its debt.
- Lender's problem is the same as in the model without frictions.

Setup

- Denote the corporate tax rate $\tau \in[0,1]$.
- The earnings are then given by $(1-\tau) k^{\alpha}$ when producing.
- The debt tax shields are given by $\tau b r$ - the amount of interest is $r b$ - this reduces the firm's overall tax burden.

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium

4 Depreciation Expensing
(5) Conclusion

Firm's problem

- Firm's problem now given by

$$
\max _{k, b} v=-k+b+\beta p\left\{(1-\tau) k^{\alpha}-b(1+r[1-\tau])\right\}
$$

subject to

$$
r=\frac{1}{p}\left[\frac{1}{\beta}-(1-p) \xi \frac{k}{b}\right]-1
$$

where the interest rate is the same since the lender's problem is unchanged.

Firm's solution

- Derivative with respect to investment given by

$$
\begin{aligned}
\frac{\partial v}{\partial k} & =-1+\beta p\left[(1-\tau) \alpha k^{\alpha-1}-b(1-\tau) \frac{\partial r}{\partial k}\right] \\
& =-1+\beta p\left[(1-\tau) \alpha k^{\alpha-1}+b(1-\tau) \frac{1}{p}(1-p) \xi \frac{1}{b}\right] \\
& =-1+(1-\tau) \beta p\left[\alpha k^{\alpha-1}+\frac{1-p}{p} \xi\right] \\
& =-1+(1-\tau) \beta p \alpha k^{\alpha-1}+\beta(1-\tau)(1-p) \xi
\end{aligned}
$$

Firm's solution

- Derivative with respect to debt given by

$$
\begin{aligned}
\frac{\partial v}{\partial b} & =1-\beta p\left[(1+r[1-\tau])+b(1-\tau) \frac{\partial r}{\partial b}\right] \\
= & 1-\beta p \times \\
& {\left[\left(1+\left\{\frac{1}{p}\left[\frac{1}{\beta}-(1-p) \xi \frac{k}{b}\right]-1\right\}[1-\tau]\right)+b(1-\tau) \frac{1}{p}(1-p) \xi \frac{k}{b^{2}}\right] } \\
= & 1-\beta p-\beta p(1-\tau) \frac{1}{p}\left[\frac{1}{\beta}-(1-p) \xi \frac{k}{b}\right]+\beta p(1-\tau) \\
& -\beta(1-\tau)(1-p) \xi \frac{k}{b} \\
= & 1-\beta p-\beta(1-\tau) \frac{1}{\beta}+\beta(1-\tau)(1-p) \xi \frac{k}{b}+ \\
& \beta p(1-\tau)-\beta(1-\tau)(1-p) \xi \frac{k}{b} \\
= & \tau(1-\beta p)
\end{aligned}
$$

Firm's solution

- So $\frac{\partial v}{\partial b}=\tau(1-\beta p)$.
- What does this mean?
- This number is always positive!
- Borrow as much as you can!
- A unit of extra borrowing gives you the added benefit of the tax deductions.
- Why is there no cost of borrowing more?
- Because the lenders only break even.
- How would this change if the lenders made positive profits?

Borrow as much as you can!

- What are the implications of this solution for the cost of debt?
- If $b \rightarrow \infty$ then

$$
\begin{aligned}
\lim _{b \rightarrow \infty} r & =\lim _{b \rightarrow \infty} \frac{1}{p}\left[\frac{1}{\beta}-(1-p) \xi \frac{k}{b}\right]-1 \\
& =\frac{1}{p} \frac{1}{\beta}-1
\end{aligned}
$$

which is equivalent to finite debt when $\xi=0$.

- Borrow as much as you can: lender behaves as if there is no liquidation value in the bad state.
- What's the intuition here?

Firm without debt

- Let's again have a look at the problem for the firm without borrowing.
- Solves

$$
\max _{k} \hat{v}=-k+\beta\left\{p(1-\tau) k^{\alpha}+(1-p) \xi k\right\}
$$

which has derivative

$$
\frac{\partial \hat{v}}{\partial k}=-1+\alpha \beta p(1-\tau) k^{\alpha-1}+\beta(1-p) \xi
$$

- How does this differ from the case with debt? Recall the derivative there was

$$
\frac{\partial v}{\partial k}=-1+(1-\tau) \beta p \alpha k^{\alpha-1}+\beta(1-\tau)(1-p) \xi
$$

Firm without debt

- This means that the firm will invest less in the case with debt here?
- How do we interpret that?
- The firm relies more on tax subsidies from the government than sales revenues.
- Why? The last term in the derivative represents the benefit received from more collateral in the case of liquidation.
- That matters less now since the firm is having part of their interest payments subsidised by the government.
- Like the government is paying the difference associated with the higher r in tax rebates.
- Firm is basically exploiting the taxpayer!

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium

44 Depreciation Expensing

(5) Conclusion

Depreciation

- Another common aspect of the tax code is for depreciation to be deductible as well.
- So far we've assumed full depreciation.
- Assume now that $\delta \in[0,1)$ is the rate of depreciation.
- So some fraction δk of the firm's capital stock is lost after use.
- You can expense this in the amount of $\tau \delta k$.
- Abstract from debt here.

Depreciation

- Firm's problem then becomes

$$
\max _{k} \hat{v}=-k+\beta\left\{p\left[(1-\tau) k^{\alpha}+(1-\delta) k+\tau \delta k\right]+(1-p) \xi k\right\}
$$

which has derivative

$$
\frac{\partial \hat{v}}{\partial k}=-1+p\left[\alpha \beta(1-\tau) k^{\alpha-1}+(1-\delta)+\tau \delta\right]+\beta(1-p) \xi
$$

Without depreciation expense

- How does this differ from when depreciation can not be expensed?
- The marginal benefit of another unit of capital is higher when depreciation can be expensed.
- More investment means big tax rebates from the government.

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium
4. Depreciation Expensing
(5) Conclusion

Summary

- Taxes distort investment incentives.
- When the firm can expense interest, we get this weird scenario where they invest less and make their living from tax rebates!
- Why don't we see this in reality?
- Needs to be some cost associated with borrowing too much!

