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DSGE Models

@ DSGE: Dynamic Stochastic General Equilibrium.

Optimising representative agents and rational expectations.

@ Controversial.

Policy implications? Predictors of crises?

Lots of work since the crisis on incorporating financial frictions.

Last few years: relax the representative agent assumption; how do
changes at the cross section affect aggregates?

A quirky yet scathing review can be found in Quiggin (2010),
“Zombie Economics: How Dead Ideas Still Walk Among Us".
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Background

@ RBC models are the original DSGEs.

@ Combine microfoundations, dynamics and stochastic shocks to
provide a theory of business cycle fluctuations.

o Consistent with the basic neoclassical growth model in the long-run.

@ Exogeneous shocks (good assumption?) drive short-run fluctuations.

e Brock, W., & Mirman, L. (1972): “Optimal Economic Growth and
Uncertainty: The Discounted Case”, Journal of Economic Theory,

4(3), 479 513.

e Kydland, F & Prescott, E. (1982) “Time to Build and Aggregate
Fluctuations”, Econometrica, 50: 1345-1370.
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Preview of the Punch-Line

@ Business cycles are a natural part of life.

@ Business cycles are efficient: can eventuate even without any market
failures.

@ Decentralised market equilibrium achieves the efficient allocation of
resources.

@ Business cycles are endogenous fluctuations, which are induced by
shocks coming from external forces.

@ Role of government should not be on smoothing business cycles:
focus instead on structural reforms.
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Fundamentals

Representative agents: firms and households.

Infinite horizon and discrete time t € {0,1,2,3,...}.

Perfectly competitive markets.

General equilibrium.

Real model: no role for money.

@ Prices are denoted in terms of real variables (e.g. goods or labour).
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Households Setup

@ Supply labour to firms and own the capital stock, (rented out to
firms).

@ Objective is to maximise the expected present value of their lifetime
utility subject to period-by-period budget constraints.

e Discounting over time: constant discount factor 0 < 5 < 1, (money
tomorrow is worth less than money today due to opportunity cost).

o Time separable utility.

@ Household owns the firm and receives its profits as income d;.
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Households' Problem

@ Problem:

_ 1
ct1 7 nt+w

o0
t
max EOZﬂ [1—0_1+¢
t=0

{ct,ne,it} 2,

subject to their budget constraints and law of motion for capital

¢t + iy < weny + reke + dy
ki1 = ie + (1 — 0)ke
key1 > 0Vt
ko given

@ How does this differ from the infinite horizon optimisation problem
from last class?
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Firms' Problem

@ Static problem since they rent factor inputs:
maXx dt =Vt — Why — rtkt
{ke,nt}

where y; = atk&nl=® and

log(at) = plog(ar—1) + €+, € ~ N(0,1)

where 0 < p < 1.

@ Zero profits d; = 0.
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Household Optimality: Lagrangian

e Lagrangian (substitute out investment for capital law of motion)

0 lea n1+1/J
L=F flte— — & +
0 ;g% P l—-0c 1+7%
[ee]
]EO Z >\t [tht + (1 ) + rt)kt + dt — Ct — kt+1]
t=0
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Household Optimality: First Order Conditions

o Notice that E¢[x;] = x;.

e FOCs:
oL e
87Ct:0jﬁtct _>\t:0 (1)
oL
one :0:>—,3tn;p+>\tWt:0 (2)
oL
=0= —BN\+ BT EAei(1 -6+ rea)] =0 (3)
Okti1
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Firm Optimality: First Order Conditions

e FOCs:

0d;
Ok
Od;
ony

=0= aak® Il —r,=0

=0=(1—a)atkin;* —w =0
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Equilibrium Definition

@ The competitive equilibrium of the RBC model is defined as a
sequence of prices {w;, r:}32, and allocations {ct, k¢41, n¢} with the
state vector {k¢, a;} taken as given by the agents in the model.
Optimality conditions (1) — (5) above hold, the no ponzi scheme
condition holds and all markets clear.
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Canonical Representation

@ Consolidate the household’'s FOCs to get labour supply and
consumption Euler equation. Resource constraint from household’s
budget constraint.

@ (1) and (2) give labour supply
C?n;/) = Wt

@ (3) and (1) give the consumption Euler equation

<C’-“C+tl>_0 (1-0+ rt+1)]

@ Household budget constraint, d; = 0 and (4) — (5) give the resource
constraint

lzﬁEt

Ct + it = Wit + reke = yi

@ Look familiar?....
12/33



R :{oN LTI Spencer (Nottingham)

Social Planner's Problem

@ Social planner's problem:

$ [ e
max g I3 —
pord -0 1479

{ct,ne,it}2,

subject to their budget constraints and law of motion for capital
ct+it =y
kt+1 == it + (]. - 5)kt
ki1 >0Vt
ko given

@ The solution to this program is Pareto optimal.

@ Exercise: show that this program yields the same solution as the RBC
market economy above.
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What's Going on in this Model?

@ The solution is Pareto optimal, yet random shocks are still present.

The productivity process a; drives everything in this model!

It's exogenous: philosophical implication?

Shocks to productivity drive endogenous responses in other variables.

We'll study local (small) deviations from a steady state as the
solution.
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What's a Steady State?

@ The steady state of a model is defined as a situation in which
variables are unchanging over time.

@ In this model, this means a; = a;—1 =1 (as p < 1).

@ As a consequence, ¢; = ¢t—1 = C, ky = ky—1 = k etc for endogenous
variables.

@ The steady state is what prevails when we shut-down all the
randomness in the model.
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What Does the Steady State Look Like?

@ Steady state labour supply
IR =w (6)
@ Steady state Euler equation
1=8(1-6+T7) (7)
@ Steady state resource constraint

E+i=y (8)
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What Does the Steady State Look Like?

e From (5) and (6), the steady state factor prices are

@ From the capital law of motion, steady state investment is

= ok

From the production function, steady state output it



e (e
What Does the Steady State Look Like?

e Equations (6) — (13) define the steady state.

o Now we approximate small deviations about the steady state when
shocks are present using log-linearisation.
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Log-Linearisation

@ Linearised labour supply

[ce%]7[Ae™ ] = we™ (14)
= &7%[e7C VM) = e
= etV — et
=>1+o0é&+vhr~=1+w,

~

:>O'C,'\t+1j}ﬁt7§i Wt

where the first line comes from the definition of X; [see lecture 1] and
the penultimate line comes from a Taylor expansion of first order of
line 3.
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Log-Linearisation

@ Linearised Euler equation

A A r N
& = E¢[Cera] + mEt[ftH]

@ Linearised resource constraint

(15)
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Log-Linearisation

@ Linearised capital law of motion
kevr = (1 — 8)ke + ol (19)
@ Linearised production function
Ve = ¢ + ake + (1 — @)y (20)
@ Linearised technology process

§t = pé\tfl + €t (21)
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Log-Linearisation

o Exercise: derive (15) — (21) yourself.

@ Again we have elght equations in eight unknowns
{Ct, fg, W, P, /t,)/u kt; 3t}
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How Do We Solve this System?

@ Two approaches we can follow:

(1) Try to solve the model analytically.

(2) Solve it numerically.
@ Analytical solution can only be found in really simple models.
@ In general, we'll need to find a numerical solution.

@ I'll teach you about numerical solutions when we get to the new
Keynesian model, for now let’s try the analytical approach.
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State Variables

@ The set of state variables of a model completely summarises the state
of the dynamic system.

@ If we know the state vector and the shocks realised for the current
period, we can solve for the full system.

@ The state variables in this model are l?t and 3;. Why?

@ Every other endogenous variable will be a function of these two.
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Reduce the System
@ Through substitutions, we can reduce the eight equation system down
(22)

to four (exercise)

1 ~
ﬁt = m[é\t + Oékt — 0'61_-]

o o r A A N

& = E¢[Ceq1] + o1 6)Et[at+1 + (@ — Dker1 + (1 — @) fega]

(23)

(1— )= Cert Lt — (1— 6k — 20— ok (24)

— )i = —& + = <[ke1 — (1= 0)ke] — 4 —
t 7 t 75 t+ t t t

(25)

which are in four variables {A¢, kty1, 8¢, ¢t }-
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Method of Undetermined Coefficients

@ We can guess policy functions of the form

ﬁtzznmaét*’ﬁmkﬁt (26)
kev1 = Ni' ,2dt + nk’,k/l%t (27)
Ct = Nc,adt + Uc,k/;t (28)

where each of these controls are functions of the state variables.

@ Recall: the state variables determine the entire system.
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Method of Undetermined Coefficients

e Start with (23), substitute-in (26) for A1

G = Et[6t+1]+

r 3 r N ~
mEt[3t+1 + (oo = D)ker1 + (1 — @){nn,adt41 + 1n kkes1}]
= E¢[éea]+

F n ~
mEf[(l +{1—a}nna)aer1 + (1 — a){nnk — 1}keqa)

= Et[nc,ade41 + nc,ki;t—i-l]'f'

ﬁEf[(l +{1- a}nn,a)§t+1 +(1— Oé){77n7k — 1}/2t+1]
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Method of Undetermined Coefficients

— [1eat gy 0+ (= )| Bl

F

et i (1= ) = 1) e

= 6t = |:77c,a + O’(].F—(S)[(l + {1 — O[}’I?n’a):| p§t+

[nc,k + ﬁ{l —a}(Mnk — 1)] i%t—i-l

28/33



Method of Undetermined Coefficients

@ Re-arrange (24) to get

kep1 =

substitute-in (26) and (28) to yield

kev1 =

=0

- |\‘<|

_l’_

{(1 o)y —;

-0 {1 + (1 — 06)77n,a - ;nc,a} a+ (30)

(1-8) + (1 — @)k — ynqk}

~

ke

=< - |\‘<|
>,

——
Q

‘<I\ =

SO N
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Method of Undetermined Coefficients

@ Substitute (28) into (22) for

" 1 ~ .
Ay = m [(1 — 0Nc,a)dr + (a0 — anc,k)kt] (31)
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Method of Undetermined Coefficients

e Equate (31) with (26) to yield

A 1 1 ~
] k= —(1— i+ —(a— k
Nn,adt + Nn kKt 1+ ’(,Z)( Unc,a)at + 1+ d}(a Unc,k) t
@ Now equate the coefficients to get
Mn,a = m(l — 07c,a)
Nn,k = 7(04 - Unc,k)'
1+

@ Repeating this for the other equations will yield 6 linear equations in 6
unknowns, {7n.a, Mn,ks Mlc,as Te,k> Mk’ Tk’ k 1 (€xercise).
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Back to the Big Picture

@ This system of variables respond endogenously to productivity shocks.

o E.g. say we start in steady state at t = 0 and then 47 = ¢; then no
further shocks (called an impulse response).

@ We can trace-out the time paths for the endogenous variables:

i1 = TIn,a€1
ko = N a€1
G = Tlc,a€1

fio = nn.alper] + Nn k [Nk 2€1]
/23 = Nk, alpe1] + i ki 2€1]
& = nc,alper] + Ne ki a€1]
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Back to the Big Picture

@ Under certain stability conditions for the parameters (to be discussed
later), we'll eventually converge back to steady state.

Wage
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