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Instructor

Adam Spencer

No need for formalities: call me either Adam or Spencer.

Assistant Professor of Economics (started here September 2018).

Ph.D. Economics and Finance, M.S. Economics.

University of Wisconsin-Madison (USA).

M.Econ. (Hons), B.Comm. (Hons) Economics.

The University of Melbourne (Australia).
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Course Overview

The course is split into two parts.

(1) Corporate finance.

(2) Asset pricing.
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(1) Corporate finance

Say a firm wants to take a new project.

Corporate finance asks the question of how they best finance the new
project?

In this part of the course, we seek to answer two questions:

(A) What does theory predict the optimal financing mix should be?

(B) Which factors matter most quantitatively (in the data)?
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(2) Asset pricing

Here we consider

(A) How do we characterise asset prices using microfoundations?

(B) When, in the real world, can we say that there is an asset price bubble?
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Tools

This course covers a lot of ground and thus requires a lot of different
tools.

We’ll make theoretical predictions, test them with data and leverage
both simultaneously using structural models.
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Summary

The material covered in this course will be tough!

It will be MATHEMATICAL IN NATURE.

You’ll get exposure to lots of new things: may seem intimidating.

Look through all the math to see the intuition of models and
solutions.

This is not a math course!
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NPV Analysis

When evaluating a project, we use NPV analysis.

Takes the cash flows associated with the project, discounts them and
adds them together.

Why is discounting necessary?

Opportunity cost of time: instead of investing in this project, I could
take the funds and stick them into a riskless bank account and get
interest earnings.

Interest earnings are the opportunity cost.
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Discount rate and discount factor

What’s the appropriate opportunity cost to use?

Depends on our investors.

What is their opportunity cost? What is their discount factor?

Assume that time in the world is discrete t ∈ {0, 1, 2, 3, ...}.

If their net opportunity cost is r > 0 per period (1 + r gross return),
then how to we discount cash flows for them?
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Discount rate and discount factor

I.e. what is £1 received at t + 1 worth in terms of time t money?

Invest £1 in this bank account at t ⇒ get back £(1+r) at t + 1. We
seek x in the following

1 at t ⇒ (1 + r) at t + 1

x at t ⇒ 1 at t + 1

which yields x = 1
1+r .

I.e. £1 received at t + 1 is worth 1
1+r at time t.

The sooner we get money, the better! We can do more with it!

Object r is referred to as the discount rate.

An object defined as β = 1
1+r is referred to as the discount factor.
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Example

E.g. consider a project that Firm A is contemplating taking. The project has an
upfront cost of c0 > 0 and then generates c > 0 in positive cash flows in perpetuity
from t = 1 onwards. The investors in the firm can invest in a riskless bank account
that offers r > 0 of net interest per period. What is the NPV of this project?

NPV = −c0 +
1

1 + r
c +

(
1

1 + r

)2
c +

(
1

1 + r

)3
c + ...

= −c0 +

∞∑
t=0

(
1

1 + r

)t
c

= −c0 +

∞∑
t=0

βtc

= −c0 +
c

1 − β

where the penultimate line follows from the definition of the discount factor and the last
line comes from geometric series.
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Example

E.g. When will the example on the previous slide constitute a good
project from the perspective of the investors? When the NPV is
positive!

−c0 +
c

1− β
≥ 0

⇒ c0 ≤
c

1− β
⇒ β ≥ c

c0
− 1

what does this mean?

Says that the project is good only if the investors are sufficiently
patient. Make sense?

Notice that this evaluates the project relative to our next best
alternative.
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NPV versus utility

This symbol β hopefully looks somewhat familiar in this context.

Recall lifetime utility is often given as

∞∑
t=0

βtu(ct)

where u(ct) is referred to as the period utility function and ct is
consumption for period t.

A risk averse household has u(ct) concave in consumption, (i.e.
u′ > 0 and u′′ < 0).

A risk neutral household has u(ct) as being linear in consumption.
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NPV versus utility

Say there is no upfront cost for a project.

And that it pays out a sequence {ct}∞t=0

NPV =
∞∑
t=0

βtct

which says that NPV is the utility associated with consuming the cash
flows for a risk-neutral investor.

In corporate finance, we’ll typically assume risk neutral investors.

Not the case in asset pricing though (more on this later in the
semester).
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Constrained Optimisation

“Economics is the study of how society manages its scarce resources”
(Mankiw, 2007, Principles of Economics).

Constrained optimisation!
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Discrete Time Deterministic Program

Consider a problem of the form

max
~xt

∞∑
t=0

f (~xt , p, t) s.t. g(~xt , p, t) = γt ∀t ≥ 0

Has the Lagrangian

L =
∞∑
t=0

f (~xt , p, t) +
∞∑
t=0

λt [γt − g(~xt , p, t)]

where λt ≥ 0 are the Lagrange multipliers.
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Dynamic Optimisation Example

Solve the following program for a risk averse household

max
{ct ,bt+1}∞t=0

∞∑
t=0

βt
c1−σt

1− σ

for β ∈ [0, 1] subject to the constraint

ct + qtbt+1 = bt + yt

and with b0 given. See that bt are discount bonds, yt is their income
endowment, qt < 1 is the bond price and the price sequence {qt}∞t=0

is taken as given.

Notice that the dynamics have an effect through savings, bt .

What are the control variables here?
16 / 24



Constrained Optimisation Spencer (Nottingham)

Dynamic Optimisation Example Solution (1)

Lagrangian given by

L =
∞∑
t=0

βt
c1−σt

1− σ
+
∞∑
t=0

λt [bt + yt − ct − qtbt+1]

which comes with first order conditions

∂L
∂ct

= 0⇒ βtc−σt − λt = 0 (1)

∂L
∂bt+1

= 0⇒ −qtλt + λt+1 = 0 (2)

∂L
∂λt

= 0⇒ ct + qtbt+1 = bt + yt , (3)
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Discrete Time Optimisation Example Solution (2)

Combining (1) and (2) yields

β

(
ct+1

ct

)−σ
= qt (4)

which is referred to as a consumption Euler equation.

Equations (3) and (4) together summarise the solution to the
program.
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Shocks

The examples we’ve looked at so far were all deterministic.

What happens when we add random shocks to the model?

Control variables will be a function of realised state of the world.
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Randomness and States of Nature

In this course, we’ll assume that there is an information set that
evolves over time denoted by It .

In the future, there is some set of possible outcomes ωi ∈ Ω.

All the agents in the model know the set Ω for the future, they just
don’t know what ωi will come up.

Take expectations over the states and form state-contingent plans for
control variables.

Et [x ] is shorthand for E[x |It ]
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Two Period Stochastic Model Example

Consider an optimal savings problem for a consumer over two periods
t ∈ {0, 1}.

The consumer receives endowment of income yt in period t where
yt = ȳ + εt where E[εt ] = 0.

Consumer maximises NPV of expected lifetime utility where period

utility function is c1−σ
t
1−σ .

Assume that price of consumption in each period is unity and bond
price is fixed at q0.

Variables will all be functions of the state realised at decision time
ωt ∈ Ω.
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Two Period Stochastic Model Example

The consumer is faced with the problem:

max
c0(ω0),c1(ω1),b0(ω0)

E0

[
c0((ω0))1−σ

1− σ
+ β

c1((ω1))1−σ

1− σ

]
subject to

c0(ω0) + q0b0(ω0) = y0(ω0)

c1(ω1) = b0(ω0) + y1(ω1)
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Two Period Stochastic Model Example Solution

Objective given by,

L = E0

[
(y0(ω0)− q0b0(ω0))1−σ

1− σ
+ β

(b0(ω0) + y1(ω1))1−σ

1− σ

]
which is a function of only one control b0 from substituting out c0
and c1.

Optimality condition given by

dL
db0(ω0)

= 0⇒ q0c0(ω0)−σ = βE0[c−σ1 (ω1)]

which is a stochastic consumption Euler equation.

See that the optimal decision depends on the state realised at t = 0
and what’s expected at t = 1.
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Topics Covered

These mathematical techniques are just tools.

If you understand how to implement all these methods today, you’ll
be good for the basic techniques needed for this module.
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