
Lecture 15: Mathematical Methods II
Recursive Methods and Introduction to Continuous

Time Models

Adam Hal Spencer

The University of Nottingham

Advanced Monetary Economics 2018



Introduction Spencer (Nottingham)

Roadmap

1 Introduction

2 Discrete Time Dynamic Programming

3 Continuous Time Recursive Formulations

4 Conclusion



Introduction Spencer (Nottingham)

Motivation

All the way back in L1 we took a refresher on Lagrangian calculus for
constrained optimisation.

We studied discrete time dynamic models and optimisation.

This lecture will introduce two more techniques:

(i) Dynamic programming (also known as recursive methods),

(ii) Continuous time optimisation.

1 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Roadmap

1 Introduction

2 Discrete Time Dynamic Programming

3 Continuous Time Recursive Formulations

4 Conclusion



Discrete Time Dynamic Programming Spencer (Nottingham)

Dynamic Programming

Recall the social planner’s problem we studied for the RBC model in
L2.

max
{ct ,nt ,kt+1}∞t=0

E0

∞∑
t=0

βt

[
c1−σ
t

1− σ
− n1+ψ

t

1 + ψ

]

subject to their budget constraints and law of motion for capital

ct + kt+1 − (1− δ)kt = akαn1−α︸ ︷︷ ︸
Output

log(at) = ρa log(at−1) + εa,t , εa,t ∼ N(0, 1)

kt+1 ≥ 0 ∀t
k0, a0 given

2 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Dynamic Programming

We solved this problem using a Lagrangian and taking the derivatives.

The above problem is known as a sequence problem.

An alternative approach is to study what’s known as the problem’s
recursive formulation.

Also known as dynamic programming.

3 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Dynamic Programming

The recursive formulation of an optimisation problem relies on the
fact that the sequence problem is infinite.

That is: it involves choosing an infinite sequence of consumption,
capital and labour.

Instead of finding the sequence of infinite choices, we can solve for a
function of the current state variables that applies for all time periods.

4 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Recursive Formulation

The recursive formulation for the social planner’s problem above is
given as

V (a, k) = max
c,k ′,n

[
c1−σ

1− σ
− n1+ψ

1 + ψ

]
+ βE[V (a′, k ′)] (1)

subject to

c + k ′ − (1− δ)k = akαn1−α

log(a) = ρa log(a−1) + εa, εa ∼ N(0, 1)

where the object V (a, k) is referred to as the value function
corresponding to state (a, k).

5 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Value Function

The value function gives us the value of the objective at the optimal
solution to the problem, (for the given state).

That is

V (a0, k0) =
∞∑
t=0

βt
[

(c∗t )1−σ

1− σ
− (n∗t )1+ψ

1 + ψ

]
where {c∗t , k∗t+1, n

∗
t }∞t=0 solves the sequence problem.

Where does this come from?

6 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Recursive Formulation

Heuristically

V (a0, k0) = max
{ct ,nt ,kt+1}∞t=0

E0

∞∑
t=0

βt

[
c1−σ
t

1− σ
− n1+ψ

t

1 + ψ

]

= max
{c0,k1,n0}

c1−σ
0

1− σ
−

n1+ψ
0

1 + ψ
+ max
{ct ,kt+1,nt}∞t=1

E0

∞∑
t=1

βt

[
c1−σ
t

1− σ
− n1+ψ

t

1 + ψ

]

= max
{c0,k1,n0}

c1−σ
0

1− σ
−

n1+ψ
0

1 + ψ
+ βE0[V (a1, k1)]

where the β comes out the front since the value function at t = 1
doesn’t have the period utility discounted.

7 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Recursive Formulation

Notice that there are no time subscripts on any of the variables in the
recursive formulation.

Instead previous period varaibles are denoted by subscript −1 and
forward variables are with ′ superscripts.

Why?...

8 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Recursive Formulation

...because this problem is time invariant.

The value function and policy functions for the controls will be the
same each period for each corresponding state vector.

This is because the problem spans an infinite time horizon.

In principle, the solution to the recursive formulation will be functions
V (a, k), k ′(a, k), n(a, k) and c(a, k).

9 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Solution

How do we solve this thing?

Usual: substitute-in the resource constraint and take the FOCs.

∂V (a, k)

∂k ′
= 0⇒ (−1)(c)−σ + βE

[
∂V (a′, k ′)

∂k ′

]
= 0

∂V (a, k)

∂n
= 0⇒ −nψ + a(1− α)kαn−α = 0

where notice that only the FOC for k ′ has implications for next
period’s value function.

10 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Solution

We’re done with the labour solution.

What about capital though? What is ∂V (a′,k ′)
∂k ′ ?

We don’t know what the value function is explicitly!

11 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Envelope Theorem

The Envelope Theorem says that

∂V (a, k)

∂k
=

∂

∂k

{[
c1−σ

1− σ
− n1+ψ

1 + ψ

]
+ βE[V (a′, k ′)]

}
=

∂

∂k

{[
[akαn1−α + (1− δ)k − k ′]1−σ

1− σ
− n1+ψ

1 + ψ

]
+ βE[V (a′, k ′)]

}
= c−σ[αakα−1n1−α + (1− δ)]

that is — just look for the places where k features and take the
derivative: no need to worry about functions of k .

12 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Envelope Theorem

We can then iterate forwards by one period

∂V (a′, k ′)

∂k ′
= (c ′)−σ[αa′(k ′)α−1(n′)1−α + (1− δ)]

13 / 20



Discrete Time Dynamic Programming Spencer (Nottingham)

Euler Equation

Combine the updated envelope condition with the FOC for capital to
get

c−σ = βE
{

(c ′)−σ[αa′(k ′)α−1(n′)1−α + (1− δ)]
}

which is our standard Euler equation!

14 / 20



Continuous Time Recursive Formulations Spencer (Nottingham)

Roadmap

1 Introduction

2 Discrete Time Dynamic Programming

3 Continuous Time Recursive Formulations

4 Conclusion



Continuous Time Recursive Formulations Spencer (Nottingham)

Motivation

So far, we’ve only studied problems in discrete time t ∈ {0, 1, 2, ...}.

Another tool we use is continuous time models where t ∈ [0,∞).

It can make things easier to solve analytically.

15 / 20



Continuous Time Recursive Formulations Spencer (Nottingham)

Example

Let’s think about a simple motivating example.

Say you are a consumer with a single gold coin.

There is some probability that you will bump into someone who wants
to trade you a good for that coin.

There will be some value associated with having a coin, denote this
by V1 (one for has a coin).

Once you give your coin up, you’ll be a person without a coin, who
has future value V0 (zero for no coin).

How can we characterise V1?

16 / 20



Continuous Time Recursive Formulations Spencer (Nottingham)

Example

You can take the limit of a discrete time problem.

Assume that the length of a time period is given by ∆ > 0.

We’ll write-down the discrete time problem and then take the limit
lim∆→0 of all the variables.

Denote the probability you find someone who’ll trade you a good for
the coin by p∆ (i.e. the probability is proportional to the length of
the time period).

You receive utility u > 0 if you trade.

Utilise continuous discounting of the form e−r∆ where r > 0 is a
discount rate.

17 / 20



Continuous Time Recursive Formulations Spencer (Nottingham)

Example

Write the discrete time Bellman equation as

V1 = (p∆)[u + e−r∆V0] + (1− p∆)e−r∆V1

⇒ 0 = (p∆)[u + e−r∆V0] + (1− p∆)e−r∆V1 − V1

⇒ 0 = (p∆)u + (p∆)e−r∆(V0 − V1) + [e−r∆ − 1]V1.

Now divide-through by ∆ to get

0 = pu + pe−r∆(V0 − V1) +
[e−r∆ − 1]

∆
V1.

Remember L’Hopital’s rule? See that

lim
∆→0

[e−r∆ − 1]

∆
V1 = −rV1.

18 / 20



Continuous Time Recursive Formulations Spencer (Nottingham)

Example

Notice also that lim∆→0 e
−r∆ = 1.

Follows then when we take the limit that

0 = pu + p(V0 − V1)− rV1

⇒ rV1 = p[u + V0 − V1].

Left-side is referred to as the flow value to having the coin.

Obviously, we’d need to find V0 to fully solve this system.

We’ll talk about this in the next lecture.

For now just understand that this is how we’ll approach continuous
time models: taking limits of discrete time equations.

19 / 20



Conclusion Spencer (Nottingham)

Roadmap

1 Introduction

2 Discrete Time Dynamic Programming

3 Continuous Time Recursive Formulations

4 Conclusion



Conclusion Spencer (Nottingham)

Takeaways

Recursive formulations (using value functions) are a convenient way
of representing optimisation problems.

Useful for computing models as well, (e.g. see numerical methods
class).

For our purposes, we’ll use recursive methods as it’s a neater way of
characterising problems than sequence problems.

20 / 20


