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Motivation

@ All the way back in L1 we took a refresher on Lagrangian calculus for
constrained optimisation.

@ We studied discrete time dynamic models and optimisation.

@ This lecture will introduce two more techniques:

(i) Dynamic programming (also known as recursive methods),

(ii) Continuous time optimisation.
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Dynamic Programming

@ Recall the social planner's problem we studied for the RBC model in
L2.
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Dynamic Programming

@ We solved this problem using a Lagrangian and taking the derivatives.

@ The above problem is known as a sequence problem.

@ An alternative approach is to study what's known as the problem'’s
recursive formulation.

@ Also known as dynamic programming.
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Dynamic Programming

@ The recursive formulation of an optimisation problem relies on the
fact that the sequence problem is infinite.

@ That is: it involves choosing an infinite sequence of consumption,
capital and labour.

@ Instead of finding the sequence of infinite choices, we can solve for a
function of the current state variables that applies for all time periods.
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Recursive Formulation

@ The recursive formulation for the social planner’'s problem above is
given as
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where the object V/(a, k) is referred to as the value function
corresponding to state (a, k).
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Value Function

@ The value function gives us the value of the objective at the optimal
solution to the problem, (for the given state).

@ That is
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where {c/, ki ;, nf}32, solves the sequence problem.

@ Where does this come from?
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Recursive Formulation

@ Heuristically
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where the $ comes out the front since the value function at t =1
doesn't have the period utility discounted.
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Recursive Formulation

@ Notice that there are no time subscripts on any of the variables in the
recursive formulation.

@ Instead previous period varaibles are denoted by subscript _; and
forward variables are with / superscripts.

o Why?...
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Recursive Formulation

@ ...because this problem is time invariant.

@ The value function and policy functions for the controls will be the
same each period for each corresponding state vector.

@ This is because the problem spans an infinite time horizon.

@ In principle, the solution to the recursive formulation will be functions

V(a, k), k'(a, k),n(a, k) and c(a, k).
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Solution

@ How do we solve this thing?

@ Usual: substitute-in the resource constraint and take the FOCs.
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where notice that only the FOC for k’ has implications for next
period’s value function.
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Solution

@ We're done with the labour solution.
@ What about capital though? What is %?

@ We don't know what the value function is explicitly!
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Envelope Theorem

@ The Envelope Theorem says that
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that is — just look for the places where k features and take the
derivative: no need to worry about functions of k.
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Envelope Theorem

@ We can then iterate forwards by one period
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Euler Equation

@ Combine the updated envelope condition with the FOC for capital to
get

¢ = BE{(¢') 7 [od (K)* (') + (1 - 8)]}

which is our standard Euler equation!
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Motivation

@ So far, we've only studied problems in discrete time t € {0,1,2,...}.
@ Another tool we use is continuous time models where t € [0, c0).

@ It can make things easier to solve analytically.
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Example

@ Let’s think about a simple motivating example.
@ Say you are a consumer with a single gold coin.

@ There is some probability that you will bump into someone who wants
to trade you a good for that coin.

@ There will be some value associated with having a coin, denote this
by Vi (one for has a coin).

@ Once you give your coin up, you'll be a person without a coin, who
has future value Vg (zero for no coin).

@ How can we characterise V47
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Example
@ You can take the limit of a discrete time problem.

@ Assume that the length of a time period is given by A > Q.

We'll write-down the discrete time problem and then take the limit
lima_,q of all the variables.

@ Denote the probability you find someone who'll trade you a good for
the coin by pA (i.e. the probability is proportional to the length of
the time period).

@ You receive utility u > 0 if you trade.

A where r > 0 is a

@ Utilise continuous discounting of the form e~
discount rate.
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Example

@ Write the discrete time Bellman equation as

Vi = (pA)u+ e "Vl + (1 — pA)e ™2V
=0=(pA)u+e Vo] + (1 - pA)e ™ V; — Vy
= 0= (pA)u+ (pA)e (Vo — V1) + [e ™ — 1]Wi.

Now divide-through by A to get

—rA [eirA — 1]
0 = pu+ pe (Vo—V1)+TV1~
Remember L'Hopital's rule? See that
' [e—rA - 1]
I Vi=—rVy.
A% A T
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Example

o Notice also that lima_ge ™ = 1.

@ Follows then when we take the limit that
0= pU+P(V0 — Vl) — er
= rVi = plu+ Vo — V4].
o Left-side is referred to as the flow value to having the coin.

@ Obviously, we'd need to find Vj to fully solve this system.

o We'll talk about this in the next lecture.

For now just understand that this is how we'll approach continuous
time models: taking limits of discrete time equations.
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Takeaways

@ Recursive formulations (using value functions) are a convenient way
of representing optimisation problems.

@ Useful for computing models as well, (e.g. see numerical methods
class).

@ For our purposes, we'll use recursive methods as it's a neater way of
characterising problems than sequence problems.
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