Lecture 11: Theory of Asset Pricing II Portfolio Choice

Adam Hal Spencer

The University of Nottingham
Advanced Financial Economics 2020

Roadmap

(1) Introduction

(2) Quadratic Utility Portfolio Choice

(3) Minimum Variance Frontier

4. Conclusion

Motivation

- So far in the asset pricing part of the course, we've thought about the consumption-savings decision.
- Where savings will take place through a risky asset.
- How should investors optimally allocate their optimal savings across multiple assets?
- Portfolio theory.

Motivation

- This is a very old area of research that we'll study today.
- It's an intuitive concept, but gets quite algebra-intensive.
- Easy to get lost in math rather than thinking about economics.
- For this reason, we'll only spend one lecture on it.
- We'll proceed in two steps: firstly thinking about a general portfolio choice problem, then into a more specific case.

Roadmap

(1) Introduction

(2) Quadratic Utility Portfolio Choice

(3) Minimum Variance Frontier

4 Conclusion

Quadratic utility

- The canonical model of Markowitz (1952) assumes quadratic utility in wealth.
- If we make this assumption, then we get an intuitive trade-off for the portfolio choice problem: the investor trades-off expected returns against variance.

Quadratic utility

- We'll think about a static model here, (just one time period).
- Abstract from thinking about the consumption-savings tradeoff.
- The investor has some amount of wealth W that they wish to invest.
- Assume they consume all their wealth at the end of the time period.
- Meaning that their utility function is over the total amount of wealth they have (after the returns to their investments are realised).

Quadratic utility

- The utility function is of the form

$$
U(W)=a W-\frac{b}{2} W^{2}
$$

where W denotes wealth. In expected utility terms, see that

$$
\begin{aligned}
\mathbb{E} U(W) & =a \mathbb{E}[W]-\frac{b}{2} \mathbb{E}\left[W^{2}\right] \\
& =a \mathbb{E}[W]-\frac{b}{2}\{\mathbb{E}[W]\}^{2}-\frac{b}{2} \operatorname{Var}(W) .
\end{aligned}
$$

- Do we need any more assumptions for this utility function to make sense?
- Place assumptions on W such that expected utility is always increasing in expected wealth.
- Doesn't really make sense to think that welfare is decreasing in expected wealth.

Quadratic utility

- This utility function is nice.
- We can think of maximising this expected utility as maximising $\mathbb{E}(W)$ for a given $\operatorname{Var}(W)$ or minimising variance for a given expected wealth.

Quadratic utility

- There's a neat implication of this utility function.
- We can scrap thinking about utility functions all together when making our portfolio choice.
- If we minimise variance to meet a certain expected return threshold, then we're maximising the investor's utility (assuming that it's quadratic like here).

Roadmap

(1) Introduction

(2) Quadratic Utility Portfolio Choice

(3) Minimum Variance Frontier

4. Conclusion

Two risky assets

- This is where the algebra becomes nightmarish.
- We'll take a simple approach: assume two risky assets: denote their returns r_{A} and r_{B}.
- Denote their expected returns μ_{A} and μ_{B} and variances σ_{A}^{2} and σ_{B}^{2}.
- Assume (to get a trade-off), that $\mu_{A}>\mu_{B}$ but $\sigma_{A}^{2}>\sigma_{B}^{2}$.
- l.e. there is not dominating asset.

Two risky assets

- Let's choose portfolio holdings $\left(\alpha_{A}, \alpha_{B}\right)$ in each of the two assets to minimise portfolio return variance subject to a required return.
- We'll also impose here that $\alpha_{\boldsymbol{A}}+\alpha_{B}=1$.
- Assume also that the two returns are independent of each other.
- The portfolio return is $r_{p}=\alpha_{A} r_{A}+\alpha_{B} r_{B}$. Means that
- $\mathbb{E}\left[r_{p}\right]=\alpha_{A} \mu_{A}+\alpha_{B} \mu_{B}$.
- $\operatorname{Var}\left(r_{p}\right)=\alpha_{A}^{2} \sigma_{A}^{2}+\alpha_{B}^{2} \sigma_{B}^{2}$.

Two risky assets

- Investor's problem is then

$$
\min _{\left\{\alpha_{A}, \alpha_{B}\right\}} \frac{1}{2}\left(\alpha_{A}^{2} \sigma_{A}^{2}+\alpha_{B}^{2} \sigma_{B}^{2}\right)
$$

subject to

$$
\begin{aligned}
\alpha_{A} \mu_{A}+\alpha_{B} \mu_{B} & =\bar{\mu} \\
\alpha_{A}+\alpha_{B} & =1
\end{aligned}
$$

where $\bar{\mu}$ is the investor's required expected return.

- Why do I put the half in the objective?
- This problem says: we're minimising the variance of our portfolio subject to a certain expected return requirement.

Two risky assets

- Investor's Lagrangian is

$$
\mathcal{L}=\frac{1}{2}\left(\alpha_{A}^{2} \sigma_{A}^{2}+\alpha_{B}^{2} \sigma_{B}^{2}\right)+\lambda\left[\alpha_{A} \mu_{A}+\alpha_{B} \mu_{B}-\bar{\mu}\right]+\gamma\left[1-\alpha_{A}-\alpha_{B}\right]
$$

with FOCs

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial \alpha_{i}} & =0 \\
\Rightarrow \sigma_{i}^{2} \alpha_{i}+\lambda \mu_{i}-\gamma & =0 \\
\Rightarrow \alpha_{i} & =\frac{\lambda \mu_{i}+\gamma}{\sigma_{i}^{2}}
\end{aligned}
$$

which holds for both $i \in\{A, B\}$.

Two risky assets

- Where to from here?
- We want expressions for the Lagrange multipliers λ and γ (endogenous) as functions of the parameters (exogenous).
- The two constraints will bind: use these!

Two risky assets

- See that

$$
\begin{aligned}
\alpha_{A} & =\frac{\lambda \mu_{A}+\gamma}{\sigma_{A}^{2}} \\
\alpha_{B} & =\frac{\lambda \mu_{B}+\gamma}{\sigma_{B}^{2}}
\end{aligned}
$$

Two risky assets

- Recall these two weights sum to one

$$
\begin{align*}
\frac{\lambda \mu_{A}+\gamma}{\sigma_{A}^{2}}+\frac{\lambda \mu_{B}+\gamma}{\sigma_{B}^{2}} & =1 \\
\Rightarrow\left(\lambda \mu_{A}+\gamma\right) \sigma_{B}^{2}+\left(\lambda \mu_{B}+\gamma\right) \sigma_{A}^{2} & =\sigma_{A}^{2} \sigma_{B}^{2} \\
\Rightarrow\left(\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}\right) \lambda+\left(\sigma_{A}^{2}+\sigma_{B}^{2}\right) \gamma & =\sigma_{A}^{2} \sigma_{B}^{2} \\
\Rightarrow \lambda & =\frac{\sigma_{A}^{2} \sigma_{B}^{2}-\gamma\left(\sigma_{A}^{2}+\sigma_{B}^{2}\right)}{\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}} \\
& =\frac{1-\gamma\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right]}{\frac{\mu_{A}}{\sigma_{A}^{2}}+\frac{\mu_{B}}{\sigma_{B}^{2}}} \tag{1}
\end{align*}
$$

Two risky assets

- Then we have the other constraint for the required expected return

$$
\begin{align*}
\frac{\lambda \mu_{A}+\gamma}{\sigma_{A}^{2}} \mu_{A}+\frac{\lambda \mu_{B}+\gamma}{\sigma_{B}^{2}} \mu_{B} & =\bar{\mu} \\
\Rightarrow \mu_{A}\left(\lambda \mu_{A}+\gamma\right) \sigma_{B}^{2}+\mu_{B}\left(\lambda \mu_{B}+\gamma\right) \sigma_{A}^{2} & =\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2} \\
\Rightarrow \lambda\left[\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}\right]+\left[\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}\right] \gamma & =\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2} \\
\Rightarrow \gamma & =\frac{\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2}-\lambda\left[\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}\right]}{\left[\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}\right]} \tag{2}
\end{align*}
$$

Two risky assets

- Finally we can combine (1) and (2) to get

$$
\begin{aligned}
& \lambda=\frac{1-\left\{\frac{\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2}-\lambda\left[\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}\right]}{\left[\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}\right]}\right\}\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right]}{\frac{\mu_{A}}{\sigma_{A}^{2}}+\frac{\mu_{B}}{\sigma_{B}^{2}}} \\
& \Rightarrow\left\{\frac{\mu_{A}}{\sigma_{A}^{2}}+\frac{\mu_{B}}{\sigma_{B}^{2}}\right\} \lambda=1-\left\{\frac{\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2}-\lambda\left[\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}\right]}{\left[\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}\right]}\right\}\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right] \\
& \Rightarrow\left(\frac{\mu_{A}}{\sigma_{A}^{2}}+\frac{\mu_{B}}{\sigma_{B}^{2}}-\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right] \frac{\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}}{\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}}\right) \lambda \\
& =1-\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right] \frac{\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2}}{\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}}
\end{aligned}
$$

Two risky assets

- Hence

$$
\lambda=\frac{1-\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right] \frac{\bar{\mu} \sigma_{A}^{2} \sigma_{B}^{2}}{\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}}}{\left(\frac{\mu_{A}}{\sigma_{A}^{2}}+\frac{\mu_{B}}{\sigma_{B}^{2}}-\left[\frac{1}{\sigma_{A}^{2}}+\frac{1}{\sigma_{B}^{2}}\right] \frac{\mu_{A}^{2} \sigma_{B}^{2}+\mu_{B}^{2} \sigma_{A}^{2}}{\mu_{A} \sigma_{B}^{2}+\mu_{B} \sigma_{A}^{2}}\right)}
$$

where γ comes from plugging this into (2).

Two risky assets

- What are these objects?
- The Lagrange multipliers can be written in terms of the variances, expected returns and required expected return on the portfolio!

Two risky assets

- What is this object α_{i} that we've found?
- Tell me three things and I can tell you the optimal weight α_{i} :
- The required portfolio return: $\bar{\mu}$.
- Asset A details: $\left(\mu_{A}, \sigma_{A}^{2}\right)$.
- Asset B details: $\left(\mu_{B}, \sigma_{B}^{2}\right)$.
- The solution is referred to as the minimum variance frontier.

Two risky assets

- From there, we have α_{A} and α_{B}.
- We know the expected return on the portfolio is given by $\bar{\mu}$.
- The portfolio return variance is then $\alpha_{A}^{2} \sigma_{A}^{2}+\alpha_{B}^{2} \sigma_{B}^{2}$.
- For two given risky assets, what does the optimal solution look like in expected return-variance space?
- I.e. if we took the expressions for $\gamma, \lambda, \alpha_{A}, \alpha_{B}$ and found the corresponding variance.
- It's a mess analytically, we can draw it numerically though.

Two risky assets

- Set $\left(\mu_{A}, \sigma_{A}^{2}\right)=(0.5,1.0)$ and $\left(\mu_{B}, \sigma_{B}^{2}\right)=(0.1,0.25)$.
- How does the portfolio variance change with the portfolio required/expected return?
- The numbers on this slide and the next are not examinable, but the shape of the MVF in $\bar{\mu}$ and σ space is examinable.

Two risky assets

Roadmap

(1) Introduction

(2) Quadratic Utility Portfolio Choice

(3) Minimum Variance Frontier

Summary

- In this lecture we've talked about how one should allocate their wealth amongst different assets.
- Under the assumption of quadratic utility, we get the minimum variance frontier (MVF).
- The MVF embodies this idea that we like returns but dislike risk.

